Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton
نویسندگان
چکیده
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.
منابع مشابه
Tropomyosin - master regulator of actin filament function in the cytoskeleton.
Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of u...
متن کاملTropomodulin and tropomyosin mediate lens cell actin cytoskeleton reorganization in vitro.
PURPOSE To determine the role of the actin cytoskeleton regulatory proteins tropomyosin and tropomodulin (Tmod) in the reorganization of the actin cytoskeleton during lens epithelial cell differentiation. METHODS Primary cultures of chick lens epithelial cells were allowed to differentiate in vitro to form lentoid bodies. Localization of F-actin, Tmod, and tropomyosin were determined by immun...
متن کاملThe roles of microfilament-associated proteins, drebrins, in brain morphogenesis: a review.
The cytoskeleton has been suggested to be one of the important endogenous factors that control neuronal morphogenesis. Analysis of the developmental changes in the protein composition of the brain led to the discovery of novel developmentally regulated actin-binding proteins, drebrins. Drebrins exhibit a number of characteristics that one might expect for an intracellular regulator of neuronal ...
متن کاملTropomyosin-based regulation of the actin cytoskeleton in time and space.
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The abil...
متن کاملA novel class of anticancer compounds targets the actin cytoskeleton in tumor cells.
The actin cytoskeleton is a potentially vulnerable property of cancer cells, yet chemotherapeutic targeting attempts have been hampered by unacceptable toxicity. In this study, we have shown that it is possible to disrupt specific actin filament populations by targeting isoforms of tropomyosin, a core component of actin filaments, that are selectively upregulated in cancers. A novel class of an...
متن کامل